以钼为基体加入其他元素(如钛、锆、铪、钨及稀土元素等)构成有色合金,这些合金元素不仅对钼合金起到固溶强化和保持低温塑性的作用,而且还能形成稳定的、弥散分布的碳化物相,提高合金的强度和再结晶温度。钼基合金因为具有良好的强度、机械稳定性、高延展性而被用于高发热元件、挤压磨具、玻璃熔化炉电极、喷射涂层、金属加工工具、航天器的零部件等。
钼成为耐热和防腐的各种结构钢的重要成分,也成为有色金属-镍和铬合金的重要成分。
金属钼的工业生产以及在电气工业上的广泛应用,大约是与金属钨在同一年代(1909年)开始的,其中一个原因就是生产这两种致密金属的粉末冶金法和压力加工工艺已研究成功,完全可应用于生产,另一个原因是一战的爆发导致了钨需求的剧增,而钨铁供应短缺加速了钼成为许多高硬度和耐冲击钢中钨的替代品。随着钼需求的增长,人们开始寻找钼的新来源,终人们在美国科罗拉多州发现了大型克莱麦科斯钼矿床,并与1918年开始开采。
目前,钼废料再回收利用的方法也很多,但一般都以火法为主,湿法为辅,常见的方法有如下几种:
升华法:这是一种基于金属钼在一定温度下能氧化成三氧化钼并升华而捕集回收的方法,回收率可达98%。该方法主要用于废钼粉、钼条、钼片、钼丝、钼铼合金、高速钢磨细废料的回收利用。
锌熔法:该方法主要通过加热、蒸馏、焙烧回收硬质合金和超合金废料中的合金元素,如钴(回收率达97%)、钼(回收率达96.2%)、钨(回收率达98.4%)。
氧化焙烧一酸浸出法:该方法主要用于含钼催化剂的回收利用,钴和钼回收率分别为97%和95%。
碳酸钠焙烧一浸出法:该方法也主要用于含钼废催化剂回收,但主要回收钴和镍,它们的浸出率都在90%以上。
钼在各地区土壤分布不均衡,造成某些地区因为钼含量偏高而出现“痛风病”,如亚美尼亚居民每日钼摄入量高达10~15mg,当地痛风病发病率很高,有些地区因为缺钼而出现“水土病”,如我国河南林县等食管癌高发地区,调查显示当地粮食、居民血清及土壤中钼的含量均很低,土壤中钼的缺乏导致硝酸盐和亚硝酸盐类等致癌物质在农作物内积聚很高,因此这里的居民容易得食管癌,后来经使用钼酸铵肥料后,粮食、蔬菜中钼的含量明显增高,居民食管癌发病率明显下降。