2024年3月20日,Aleo官方社区会议中Aleo基金会执行董事Alex强调“新coinbase算法的目标是让人们使用ASIC,但一开始很可能会使用更多的GPU。新算法可能会占用更多内存,因此可能需要更复杂的设置”。
按照官方的设想和规划未来在Aleo上每天的交易量都是上亿美金的规模,在这样大数据量的要求下,每时每刻都有证明需要被委托出去在极短的时间内完成证明的生产,不可能指望显卡能解决这个问题。就像AI大模型训练一样,早期数据量和参数少的情况下可以用消费级显卡,但是现在更多的都是为AI训练设计的专用芯片和机器。
芯片的硬件指的是运行指令的物理平台,包括处理器、内存、存储设备等等。芯片数据中常出现的“晶体管数量”、“7nm制程”、“存储”等,往往指的就是硬件参数。
软件则包括固件、驱动程序、操作系统、应用程序、算子、编译器和开发工具、模型优化和部署工具、应用生态等等。这些软件指导硬件如何响应用户指令、处理数据和任务,同时通过特定的算法和策略优化硬件资源的使用。芯片数据中常出现的“x86指令集”、“深度学习算子”、“CUDA平台”等,往往指的就是芯片软件。
为了打破英伟达一家独大的局面,前任全球芯片老大英特尔和多年老对手AMD对标CUDA都分别推出了OneAPI和ROCm,Linux基金会更是联合英特尔、谷歌、高通、ARM、三星等公司联合成立了民间号称“反CUDA联盟”的UXL基金会,以开发全新的开源软件套件,让AI开发者能够在基金会成员的任何芯片上进行编程,试图让其取代CUDA,成为AI开发者的开发平台。