硬件层面,也就是所谓的硬件加速, CPU、GPU、FPGA、ASIC。CPU与GPU相比在大数据多任务处理上,肯定GPU更占优势。FPGA与GPU相比,在兼顾了灵活性的基础上,无论是计算能力和功耗性能上都要更强,缺点是性价比太低。ASIC是的,其他的硬件形态都是无法比拟的。
●在算法过程中频繁的数据混洗使得NTT难以在计算集群中分布,无法并行计算,并且由于需要从大型数据集中加载和卸载数据,在硬件上运行时需要大量带宽。即使硬件操作很快,这可能也会导致速度变慢。例如,如果硬件芯片的内存为16GB或更少,那么在100GB的数据集上运行NTT将需要通过网络加载和卸载数据,这可能会大大降低操作速度。
按照官方的设想和规划未来在Aleo上每天的交易量都是上亿美金的规模,在这样大数据量的要求下,每时每刻都有证明需要被委托出去在极短的时间内完成证明的生产,不可能指望显卡能解决这个问题。就像AI大模型训练一样,早期数据量和参数少的情况下可以用消费级显卡,但是现在更多的都是为AI训练设计的专用芯片和机器。
虽然PoW的周期是10年,不代表说10年后ASIC就不需要了,只要隐私委托代理计算方案还存在,那么ASIC其实是一直需要的。
总结,从算法、定位和共识三个方面综合来看,Aleo都和以往的其他公链项目有本质上的差别,而ASIC对于Aleo来说是必需的硬件设备,就好比专用显卡/芯片对于AI大模型训练是一样的道理,所以官方明确表态支持ASIC也在情理之中,而且无论从Token价格、内存、带宽、成本、回本周期等因素长期来看,ASIC都是选择。